What Plants Do With Water and How They Breathe

  • Whether it be desirous to retain water or to lose it by gradual evaporation, or expel an excess of it, each species of plant has developed the apparatus to best preserve its individual life. While only the barest outline of these adjustments to the water requirements of plants has been given here, the details form an almost dramatic picture of struggle of the different kinds of plants for survival. The extremes are the desert plants on the one hand and those of the rain forests in the tropics on the other. The chapter on Plant Distribution will show how important these water requirements of plants have been in determining what grows on the earth to-day.

    With carbon dioxide going in, oxygen, water vapor and, as we have seen, even liquid water coming out of the stoma of leaves, it might be surmised that these busy little pores and their guard cells had done work enough for the plant. And yet there is still one more act to play and the stoma have much to do with it. For this process of photosynthesis and the closely related one of supplying food and water to the leaf cannot go on without respiration, which is quite another thing. In plants respiration or breathing has no more to do with digestion than it does in man. Digestion in man is not unlike photosynthesis in plants, except that plants make food in the process while men destroy it. But plants must breathe just as we do, and, as we need oxygen to renew our vital processes, so do they. While respiration is a necessary part of plant activity it is not such an important part as photosynthesis, for which it is often mistaken. The thing to fix in our minds is that photosynthesis makes food, uses the sun’s energy and releases oxygen in the process, while respiration uses oxygen and might almost be likened to the oil of a machine—necessary but producing nothing.

  • Among the elements whose physiological effects upon higher plants, such as the cereal crops, etc., when their soluble compounds are present in the soil, have been carefully studied, there are three fairly distinct types of injurious mineral elements. The first of these, represented by copper, zinc, and arsenic, apparently exert their toxic effect regardless of the proportion in which they are present in the nutrient solution which is presented to the plant; although the degree of injury varies with the amount of injurious substance present, of course. The second type, of which boron and manganese are representatives, apparently exerts a definite stimulating effect upon plants when supplied to them in concentrations below certain clearly defined limits; but are toxic in concentrations above these. The third includes many soluble salts of magnesium, sodium, potassium, etc., which while either innocuous or else definite sources of essential plant foods when in lower concentrations, become highly toxic, or corrosive, when present in the soil solution in concentrations above the limits of "toleration" of individual plants for these soluble salts. The tolerance shown by the different species of plants toward these soluble salts (the so-called "alkali" in soils) varies widely; indeed, there seems to be considerable variation in the resistance of different individual plants of the same species to injury from this cause.

  • The wild Roses of the world, had we no other plants, would alone make beautiful wild gardens. The unequalled grace of the Wild Rose is as remarkable as the beauty of bloom for which the Rose is grown in gardens. The culture is mostly of a kind which tends to conceal or suppress the grace of shoot and foliage of the Rose.

    Therefore the wild garden may do good work in bringing before the many who love gardens, but have fewer chances of seeing the Roses in their native haunts, the native grace of the well–loved Rose, which even in its obesity, and trained into the form of a mop, still charms us.