Doriana Malcoci Beginner
  • Member since Dec 3rd 2018
  • Last Activity:

Posts by Doriana Malcoci

    Four sugars having the formula C6H12O6, namely, glucose, fructose, mannose, and galactose, occur very commonly and widely distributed in plants. In addition to these, thirteen others having the same percentage composition have been artificially prepared, while seven additional forms are theoretically possible. In other words, twenty-four different compounds, all having the same empirical formula and similar sugar-like properties are theoretically possible. In order to arrive at a conception of this multiplicity of isomeric forms, it is necessary to understand the two types of isomerism which are involved. One of these is structural isomerism, and the other is space- or stereo-isomerism.

    The second group includes iron, calcium, magnesium, and, generally, sulfur. All of these elements are essential for plant growth, but are usually present in the soil in ample quantities to insure a sufficient supply in available form for all plant needs. Recent investigations have shown, however, that there are many soils in which sulfur is present in such limited quantities that many agricultural crops, when grown on these soils, respond favorably to the application of sulfur-containing fertilizers. In such cases, sulfur is a "critical" element.

    These two streams of sap, one going up and the other returning to the roots, each in its proper channel, are interspersed with air chambers that extend from the center of the tree out toward the bark, where they end in inconspicuous dots called lenticels. It is as though nature had provided an air-cooling device for the constant activity of these diverse currents. These lenticels are prominent on the bark of cherry, but whether obvious or not they are found in nearly all woody stems and insure a constant supply of fresh air to the busy interior.

    In palms, sugar cane, corn, bamboo, and many other plants there is not any distinction between heartwood and sapwood, and in place of bark there is nothing but an outer rind, harder than the interior tissue. Such stems do not usually rot first at the center, have no cambium, and have no annual rings. This method of growth and structure is associated nearly always with definite leaf and flower forms peculiar to it and differing from most other plants. So fundamental are these characteristics, so uniform their occurrence and so clear are the distinctions between them and other plants that botanists have divided all flowering plants into those belonging to this group or to some others. More will be said of this in the chapter on the Families of Plants and Their Relationship.